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ABSTRACT

A new spectral-spatial method for hyperspectral data classifi-
cation is proposed. For a given hyperspectral image, proba-
bilistic pixelwise classification is first applied. Then, hierar-
chical step-wise optimization algorithm is performed, by iter-
atively merging neighboring regions with the smallest Dis-
similarity Criterion (DC) and recomputing class labels for
new regions. The DC is computed by comparing region mean
vectors, class labels and a number of pixels in the two re-
gions under consideration. The algorithm is converged when
all the pixels get involved in the region merging procedure.
Experimental results are presented on two remote sensing hy-
perspectral images acquired by the AVIRIS and ROSIS sen-
sors. The proposed approach improves classification accu-
racies and provides maps with more homogeneous regions,
when compared to previously proposed classification tech-
niques.

Index Terms— Hyperspectral imaging, hierarchical seg-
mentation, classification, support vector machines.

1. INTRODUCTION

In hyperspectral imagery, each pixel is represented by a de-
tailed spectrum of the received light. Since different sub-
stances exhibit different spectral signature, hyperspectral im-
agery is a well-suited technology for accurate image classifi-
cation. However, a large number of spectral channels presents
challenges to image analysis.

An extensive literature is available on classification of hy-
perspectral images [1, 2]. Recent studies have shown the
advantage of considering the correlations between spatially
adjacent pixels for accurate image classification, i.e., apply-
ing spectral-spatial classification [3, 4]. One of the recently
proposed approaches consists in performing image segmenta-
tion (partitioning of the image into homogeneous regions) and
then using the identified regions as adaptive neighborhoods
for all the pixels within these regions [5]. However, the accu-
racy of segmentation results strongly depends on the chosen
criterion of region homogeneity. In order to mitigate this de-
pendence, we have recently proposed to perform probabilis-
tic classification for selecting the most reliably classified pix-

els as markers, or region seeds, for region growing [4]. This
technique led to a significant improvement of classification
accuracies when compared to previously proposed methods.
The drawback of this method is that the selection of markers
strongly depends on the performance of the initial classifier:
non-marked regions disappear in the final classification map,
while if a marker is classified to the wrong class, the whole
region grown from this marker risks to be wrongly classified.

In this work, we propose to use Hierarchical Step-Wise
Optimization (HSWO) method for including spatial depen-
dencies into a classification procedure. HSWO is a segmen-
tation approach, which iteratively merges pairs of the most
similar spatially adjacent regions, and generates at its output
a hierarchical set of image segmentations [6]. We propose to
use supervised classification results for computing more ac-
curately a sequence of region merges and for defining a con-
vergence criterion, leading to a single spectral-spatial classifi-
cation map. Thus, a new Classification and Hierarchical Op-
timization (CaHO) method for hyperspectral images is pro-
posed. First, probabilistic pixelwise classification of the input
image is performed. Then, at each iteration two neighbor-
ing regions with the smallest Dissimilarity Criterion (DC) are
merged, and a class label for a new region is computed. The
DC between regions is defined as a function of region statisti-
cal features, a number of pixels in the considered regions and
their class labels. When all image pixels get involved in re-
gion merging, the algorithm converges, resulting in a spectral-
spatial classification map.

The paper is organized as follows. The next section
presents a new CaHO method. Experimental results are pre-
sented and discussed in Section 3 . Finally, conclusions are
drawn in Section 4.

2. PROPOSED METHOD

On the input a B-band hyperspectral image is given, which
can be considered as a set of n pixel vectors X = {xj ∈
RB , j = 1, 2, ..., n}. The objective is to compute a classifi-
cation map L = {Lj , j = 1, 2, ..., n}, where each pixel xj
is assigned to one of K thematic classes (i.e., has a class la-
bel Lj). The proposed CaHO method, illustrated in Fig. 1, is
composed of two main steps:
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Fig. 1. Flowchart of the proposed CaHO approach. “DC”
means Dissimilarity Criterion.

2.1. Probabilistic pixelwise classification

The aim of the first step is to compute a classification map
L = {Lj , j = 1, 2, ..., n} for a given hyperspectral image,
where each pixel has a unique class label, and class proba-
bilities for each pixel {P (Lj = k|xj), k = 1, ...,K}, j =
1, 2, ..., n. We propose to perform probabilistic Support Vec-
tor Machines (SVM) classification for this purpose, which is
extremely well suited for classifying hyperspectral data [1].
We refer the reader to [1] and [7] for details on the SVM
method, and to [4] for details on how class probabilities are
estimated using pairwise coupling of binary probability esti-
mates.

2.2. Hierarchical optimization

At this step, regularization of the classification map obtained
at the previous step is performed, by applying a new hierar-
chical optimization approach as follows:

1) Initialize the optimization by labeling each image pixel
as a separate region. Each one-pixel region Ri has a class
label L(Ri) and aK-dimensional vector of class probabilities
{Pk(Ri) = P (L(Ri) = k|Ri), k = 1, ...,K}.

2) Compute the DC between all pairs of neighboring re-

gions, using an eight-connectivity neighborhood. A DC be-
tween two regionsRi andRj DC(Ri, Rj) is calculated using
the following algorithm:

• Compute the dissimilarity measureDCspectral(Ri, Rj)
between two regions by comparing spectral values
of the pixels within these regions. We investigated
the use of two dissimilarity measures for this pur-
pose. The Spectral Angle Mapper (SAM) between
the region mean vectors ui = (ui1, ..., uiB)

T and
uj = (uj1, ..., ujB)

T is defined as the angle between
them:

SAM(ui,uj) = arccos
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b=1 uibujb
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The Square root of band sum Mean Squared Error
(MSE) measure is based on minimizing the increase of
MSE between the region mean vector and the original
image data and is computed as

MSE(ui,uj) =

[
ninj

(ni + nj)

B∑
b=1

(uib − ujb)2
]1/2

, (2)

where ni and nj is a number of pixels in the regions Ri

and Rj , respectively.

• If the regions have equal class labels L(Ri) = L(Rj),
the DC between these regions

DC(Ri, Rj) = DCspectral(Ri, Rj). (3)

• If the regions have different class labels L(Ri) 6=
L(Rj), the DC between them is found as:

a) If ni > M and nj > M , DC(Ri, Rj) = ∞
(the upper maximum value of float). This means
that if a two large regions are classified to differ-
ent classes, they cannot be merged together. This
condition is included for favoring merging small
regions.

b) Otherwise,

DC(Ri, Rj) =W ·DCspectral(Ri, Rj), (4)

where W > 1. This means that if two regions
have different class labels, the DC between them
is penalized by a constant W .

3) Find the smallest DC value DCmin.
4) Merge all pairs of neighboring regions satisfying

DC = DCmin. For each new region Rnew created by
merging two regions Ri and Rj , recalculate:

• Class probabilities as

Pk(Rnew) =
Pk(Ri)ni + Pk(Rj)nj

nnew
, (5)

k = 1, ...,K, where nnew = ni + nj .



Table 1. Information Classes, Number of Labeled Samples (No. of Samp.) and Classification Accuracies in Percentage for the
Indian Pines Image.

No. of Samp.
SVM ECHO

SVM HSEG CaHO (W = 1.5)
DCspectral Train Test MSF +MV SAM MSE
Overall Accuracy - - 78.17 82.64 88.41 90.86 88.87 89.15
Average Accuracy - - 85.97 83.75 91.57 93.96 93.75 93.82
Corn-no till 50 1384 78.18 83.45 90.97 90.46 95.38 94.22
Corn-min till 50 784 69.64 75.13 69.52 83.04 80.36 79.21
Corn 50 184 91.85 92.39 95.65 95.65 97.28 96.20
Soybeans-no till 50 918 82.03 90.10 98.04 92.06 97.28 94.99
Soybeans-min till 50 2418 58.95 64.14 81.97 84.04 73.53 74.52
Soybeans-clean till 50 564 87.94 89.89 85.99 95.39 89.89 94.86
Alfalfa 15 39 74.36 48.72 94.87 92.31 97.44 94.87
Grass/pasture 50 447 92.17 94.18 94.63 94.41 93.96 97.32
Grass/trees 50 697 91.68 96.27 92.40 97.56 97.70 97.56
Grass/pasture-mowed 15 11 100 36.36 100 100 100 100
Hay-windrowed 50 439 97.72 97.72 99.77 99.54 99.54 99.32
Oats 15 5 100 100 100 100 100 100
Wheat 50 162 98.77 98.15 99.38 98.15 99.38 99.38
Woods 50 1244 93.01 94.21 97.59 98.63 98.63 99.04
Bldg-Grass-Tree-Drives 50 330 61.52 81.52 68.79 82.12 79.70 81.82
Stone-steel towers 50 45 97.78 97.78 95.56 100 100 97.78

• Class label as

L(Rnew) = argmax
k
{Pk(Rnew)}. (6)

5) Stop if each image pixel has been involved at least once
in the region merging procedure. Otherwise, recalculate the
DC values for the new regions and all regions spatially adja-
cent to them, and return to step 3.

The proposed convergence criterion assumes that the im-
age does not contain one-pixel regions of interest. If such
regions may exist, the algorithm must be converged earlier.
The convergence criterion in this case can for instance com-
pare class probabilities of next candidates for merging, and
stop the procedure when these candidates belong to different
classes with probabilities higher than the defined threshold.
Another, simpler criterion consists in stopping the algorithm
when [(1−P )n] pixels get involved in region merging, where
P (0 < P < 1) is a probability of occurrence of one-pixel re-
gions in the considered image. Since the images used for our
experiments do not contain one-pixel regions of interest, we
use the convergence criterion proposed in step 5.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We applied the proposed CaHO method to to hyperspectral
airborne images described in the following:

1) The Indian Pines image was recorded by the AVIRIS
sensor over the vegetation area. It is of 145 by 145 pixels,
with a spatial resolution of 20 m/pixel and 200 spectral chan-
nels. Sixteen information classes are considered, which are
detailed in Table 1, with the number of training and test sam-
ples for each class. Training samples were randomly selected

Table 2. CaHO Overall and Average Classification Accura-
cies (OA and AA, respectively) for the Indian Pines Image
for Different Values of the Parameter W .

DC W 1.0 1.25 1.5 1.75 2.0 3.0

SAM
OA 87.34 88.61 88.87 88.42 88.44 86.80
AA 91.74 93.72 93.75 93.04 93.49 92.81

MSE
OA 88.93 88.34 89.15 87.81 88.08 87.26
AA 87.48 92.65 93.82 93.23 93.32 93.27

Table 3. Classification Accuracies in Percentage for the Cen-
ter of Pavia Image.

SVM
SVM HSEG CaHO (W = 1.5)

DCspectral MSF +MV SAM MSE
Overall Acc. 94.96 91.31 96.67 96.58 96.51
Average Acc. 92.56 92.64 95.41 95.61 95.60

from the reference data. The remaining samples composed
the test set.

2) The Center of Pavia image was acquired by the ROSIS
sensor over the urban area of Pavia, Italy. The image is of 785
by 300 pixels, with a spatial resolution of 1.3 m/pixel, 102
spectral channels and nine classes of interest. Thirty samples
for each class were randomly chosen from the reference data
as training samples. More information about the image, with
the used training-test set can be found in [8].

For both images, the probabilistic one-versus-one SVM
classification with the Gaussian Radial Basis Function (RBF)
kernel was performed. The optimal parameters C (penalty
during the SVM optimization) and γ (spread of the RBF ker-
nel) were selected by fivefold cross validation. Then, the pro-
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Fig. 2. Indian Pines image. (a) SVM classification map. (b)
CaHO classification map (MSE DCspectral, W = 1.5).

posed hierarchical optimization was applied using the SAM
and the MSE spectral dissimilarity measures (the algorithm
was implemented using the Hierarchical Segmentation soft-
ware [9]). We set the parameter M = 20. Table 2 gathers
overall and average (i.e., average over the classes) accuracies
of the CaHO method for the Indian Pines image for differ-
ent values of the parameter W . It can be seen from the table
that the method is robust to the choice of W , and quite a wide
range of values of W leads to high classification accuracies
for both SAM and MSE dissimilarity measures. The best ac-
curacies are achieved with W = 1.5.

Table 1 summarizes global and class-specific accuracies
of the pixelwise SVM classification and the proposed CaHO
technique with W = 1.5 for the Indian Pines image. In or-
der to compare the results of the proposed method with other
advanced techniques, we have included results of the ECHO
classification [10], a classification using the construction of
a minimum spanning forest from the SVM-derived markers
(SVMMSF) [4] and a classification by majority voting within
neighborhoods defined by HSEG segmentation (HSEG+MV,
with Swght = 0.0, which is equivalent to HSWO, and the
SAM DC) [5]. Table 3 gives global accuracies of the SVM,
SVMMSF, HSEG+MV and CaHO classification methods for
the Center of Pavia image. As can be seen from the tables, the
HSEG+MV and the CaHO methods yield the best global and
most of the class-specific accuracies (the average accuracies
of these approaches are non-significantly different). However,
in the HSEG+MV method a segmentation map was chosen in-
teractively from the segmentation hierarchy, while the CaHO
method is automatic. Fig. 2(b) shows the CaHO classification
map (with MSE Dspectral, W = 1.5), which is less noisy
when compared to the SVM map (see Fig. 2(a)).

4. CONCLUSIONS

In this paper, a new CaHO method for spectral-spatial clas-
sification of hyperspectral images is proposed. The method
consists in performing a probabilistic pixelwise classification,
followed by a hierarchical optimization, where at each step

two “closest” neighboring regions are merged, and a clas-
sification map is recomputed. Experimental results demon-
strate that the proposed method improves classification accu-
racies, when compared to previously proposed classification
schemes, and is sufficiently robust for classifying different
kinds of images.
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